# ----------------------------------task1------------------------------------
from sklearn.datasets import load_iris
!pip install scikit-learn
from sklearn.datasets import load_iris
# ----------------------------------task2------------------------------------
# Create a DataFrame from the iris dataset
iris_df = pd.DataFrame(iris_data['data'], columns=iris_data['feature_names'])
iris_df['species'] = pd.Categorical.from_codes(iris_data['target'], iris_data['target_names'])
summary_statistics = iris_df.describe()
# Check for missing values
missing_values = iris_df.isnull().sum()
(summary_statistics, missing_values)
# ----------------------------------task3------------------------------------
import matplotlib.pyplot as plt
# Use seaborn's pairplot to visualize the dataset features
sns.set(style='whitegrid', context='notebook')
iris_pairplot = sns.pairplot(iris_df, hue='species', height=2.5)